metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: (C2×D4).8D6, (C2×C12).4D4, (C22×C12)⋊2C4, C22⋊C4⋊2Dic3, (C6×D4).6C22, (C22×C4)⋊4Dic3, (C22×C6).15D4, C6.22(C23⋊C4), C12.D4.2C2, C3⋊3(C23.D4), C23.6(C3⋊D4), C23.7(C2×Dic3), C22.D4.1S3, C23.7D6.2C2, C2.7(C23.7D6), C22.13(C6.D4), (C3×C22⋊C4)⋊2C4, (C2×C4).6(C3⋊D4), (C22×C6).14(C2×C4), (C2×C6).97(C22⋊C4), (C3×C22.D4).1C2, SmallGroup(192,98)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for (C22×C12)⋊C4
G = < a,b,c,d | a2=b2=c12=d4=1, ab=ba, ac=ca, dad-1=abc6, bc=cb, dbd-1=bc6, dcd-1=abc-1 >
Subgroups: 208 in 68 conjugacy classes, 23 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, C23, Dic3, C12, C2×C6, C2×C6, C22⋊C4, C22⋊C4, C4⋊C4, M4(2), C22×C4, C2×D4, C3⋊C8, C2×Dic3, C2×C12, C2×C12, C3×D4, C22×C6, C23⋊C4, C4.D4, C22.D4, C4.Dic3, C6.D4, C3×C22⋊C4, C3×C22⋊C4, C3×C4⋊C4, C22×C12, C6×D4, C23.D4, C12.D4, C23.7D6, C3×C22.D4, (C22×C12)⋊C4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Dic3, D6, C22⋊C4, C2×Dic3, C3⋊D4, C23⋊C4, C6.D4, C23.D4, C23.7D6, (C22×C12)⋊C4
Character table of (C22×C12)⋊C4
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 6D | 6E | 6F | 8A | 8B | 12A | 12B | 12C | 12D | 12E | 12F | 12G | |
size | 1 | 1 | 2 | 4 | 4 | 2 | 4 | 4 | 4 | 8 | 24 | 24 | 2 | 2 | 2 | 4 | 4 | 8 | 24 | 24 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -i | i | 1 | 1 | 1 | 1 | 1 | -1 | -i | i | 1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 4 |
ρ6 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -i | i | 1 | 1 | 1 | 1 | 1 | -1 | i | -i | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 4 |
ρ7 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | i | -i | 1 | 1 | 1 | 1 | 1 | -1 | i | -i | 1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 4 |
ρ8 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | i | -i | 1 | 1 | 1 | 1 | 1 | -1 | -i | i | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 2 | -1 | 2 | -2 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | 2 | -2 | 2 | -1 | -2 | -2 | -2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | symplectic lifted from Dic3, Schur index 2 |
ρ14 | 2 | 2 | 2 | -2 | 2 | -1 | -2 | 2 | 2 | -2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 1 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ15 | 2 | 2 | 2 | -2 | -2 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 0 | 0 | √-3 | -√-3 | √-3 | -√-3 | -1 | √-3 | -√-3 | complex lifted from C3⋊D4 |
ρ16 | 2 | 2 | 2 | 2 | -2 | -1 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | -1 | 0 | 0 | √-3 | -√-3 | √-3 | -√-3 | 1 | -√-3 | √-3 | complex lifted from C3⋊D4 |
ρ17 | 2 | 2 | 2 | 2 | -2 | -1 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | -1 | 0 | 0 | -√-3 | √-3 | -√-3 | √-3 | 1 | √-3 | -√-3 | complex lifted from C3⋊D4 |
ρ18 | 2 | 2 | 2 | -2 | -2 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 0 | 0 | -√-3 | √-3 | -√-3 | √-3 | -1 | -√-3 | √-3 | complex lifted from C3⋊D4 |
ρ19 | 4 | 4 | -4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ20 | 4 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | 2√-3 | -2√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C23.7D6 |
ρ21 | 4 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2√-3 | 2√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C23.7D6 |
ρ22 | 4 | -4 | 0 | 0 | 0 | 4 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 2i | -2i | -2i | 0 | 0 | 0 | complex lifted from C23.D4 |
ρ23 | 4 | -4 | 0 | 0 | 0 | 4 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | -2i | 2i | 2i | 0 | 0 | 0 | complex lifted from C23.D4 |
ρ24 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 2i | -2i | 0 | 0 | 0 | 2√-3 | 2 | -2√-3 | 0 | 0 | 0 | 0 | 0 | 2ζ4ζ3 | 2ζ4ζ32 | 2ζ43ζ3 | 2ζ43ζ32 | 0 | 0 | 0 | complex faithful |
ρ25 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 2i | -2i | 0 | 0 | 0 | -2√-3 | 2 | 2√-3 | 0 | 0 | 0 | 0 | 0 | 2ζ4ζ32 | 2ζ4ζ3 | 2ζ43ζ32 | 2ζ43ζ3 | 0 | 0 | 0 | complex faithful |
ρ26 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | -2i | 2i | 0 | 0 | 0 | -2√-3 | 2 | 2√-3 | 0 | 0 | 0 | 0 | 0 | 2ζ43ζ32 | 2ζ43ζ3 | 2ζ4ζ32 | 2ζ4ζ3 | 0 | 0 | 0 | complex faithful |
ρ27 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | -2i | 2i | 0 | 0 | 0 | 2√-3 | 2 | -2√-3 | 0 | 0 | 0 | 0 | 0 | 2ζ43ζ3 | 2ζ43ζ32 | 2ζ4ζ3 | 2ζ4ζ32 | 0 | 0 | 0 | complex faithful |
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 33)(8 34)(9 35)(10 36)(11 25)(12 26)(13 47)(14 48)(15 37)(16 38)(17 39)(18 40)(19 41)(20 42)(21 43)(22 44)(23 45)(24 46)
(1 48)(2 37)(3 38)(4 39)(5 40)(6 41)(7 42)(8 43)(9 44)(10 45)(11 46)(12 47)(13 26)(14 27)(15 28)(16 29)(17 30)(18 31)(19 32)(20 33)(21 34)(22 35)(23 36)(24 25)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(2 32 37 13)(3 11)(4 30 39 23)(5 9)(6 28 41 21)(8 26 43 19)(10 36 45 17)(12 34 47 15)(14 33 20 27)(16 31 22 25)(18 29 24 35)(38 40)(42 48)(44 46)
G:=sub<Sym(48)| (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,25)(12,26)(13,47)(14,48)(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44)(23,45)(24,46), (1,48)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,26)(14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,33)(21,34)(22,35)(23,36)(24,25), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (2,32,37,13)(3,11)(4,30,39,23)(5,9)(6,28,41,21)(8,26,43,19)(10,36,45,17)(12,34,47,15)(14,33,20,27)(16,31,22,25)(18,29,24,35)(38,40)(42,48)(44,46)>;
G:=Group( (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,25)(12,26)(13,47)(14,48)(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44)(23,45)(24,46), (1,48)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,26)(14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,33)(21,34)(22,35)(23,36)(24,25), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (2,32,37,13)(3,11)(4,30,39,23)(5,9)(6,28,41,21)(8,26,43,19)(10,36,45,17)(12,34,47,15)(14,33,20,27)(16,31,22,25)(18,29,24,35)(38,40)(42,48)(44,46) );
G=PermutationGroup([[(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,33),(8,34),(9,35),(10,36),(11,25),(12,26),(13,47),(14,48),(15,37),(16,38),(17,39),(18,40),(19,41),(20,42),(21,43),(22,44),(23,45),(24,46)], [(1,48),(2,37),(3,38),(4,39),(5,40),(6,41),(7,42),(8,43),(9,44),(10,45),(11,46),(12,47),(13,26),(14,27),(15,28),(16,29),(17,30),(18,31),(19,32),(20,33),(21,34),(22,35),(23,36),(24,25)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(2,32,37,13),(3,11),(4,30,39,23),(5,9),(6,28,41,21),(8,26,43,19),(10,36,45,17),(12,34,47,15),(14,33,20,27),(16,31,22,25),(18,29,24,35),(38,40),(42,48),(44,46)]])
Matrix representation of (C22×C12)⋊C4 ►in GL4(𝔽73) generated by
72 | 0 | 71 | 0 |
0 | 72 | 0 | 71 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
30 | 60 | 0 | 0 |
13 | 43 | 0 | 0 |
0 | 0 | 30 | 60 |
0 | 0 | 13 | 43 |
59 | 66 | 59 | 39 |
7 | 66 | 34 | 20 |
0 | 0 | 0 | 27 |
0 | 0 | 46 | 46 |
1 | 0 | 0 | 0 |
72 | 72 | 0 | 0 |
21 | 43 | 43 | 13 |
22 | 52 | 43 | 30 |
G:=sub<GL(4,GF(73))| [72,0,0,0,0,72,0,0,71,0,1,0,0,71,0,1],[30,13,0,0,60,43,0,0,0,0,30,13,0,0,60,43],[59,7,0,0,66,66,0,0,59,34,0,46,39,20,27,46],[1,72,21,22,0,72,43,52,0,0,43,43,0,0,13,30] >;
(C22×C12)⋊C4 in GAP, Magma, Sage, TeX
(C_2^2\times C_{12})\rtimes C_4
% in TeX
G:=Group("(C2^2xC12):C4");
// GroupNames label
G:=SmallGroup(192,98);
// by ID
G=gap.SmallGroup(192,98);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,28,141,232,219,675,297,1684,6278]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^12=d^4=1,a*b=b*a,a*c=c*a,d*a*d^-1=a*b*c^6,b*c=c*b,d*b*d^-1=b*c^6,d*c*d^-1=a*b*c^-1>;
// generators/relations
Export